HYDERABAD INSTITUTE OF TECHNOLOGY AND MANAGEMENT

B.Tech. HR-2021 COURSE STRUCTURE - ECE

(Applicable from the batch admitted during 2021-22 and onwards)

Induction Program - 2 Weeks

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Subject</th>
<th>Hours Per Week</th>
<th>Scheme of Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>21BS1MT01</td>
<td>Matrix Algebra and Calculus</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>21BS1PH01</td>
<td>Applied Physics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21HS1EG01</td>
<td>English</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>21ES1EE01</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>21HS1MB01</td>
<td>Business Economics and Financial Accountancy</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>21BS1PH02</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>21HS1EG02</td>
<td>English Language Communication Skills Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>21ES1EE02</td>
<td>Basic Electrical and Electronics Engineering Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>240</td>
</tr>
</tbody>
</table>

Mandatory Course (Non-Credit)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Subject</th>
<th>Hours Per Week</th>
<th>Scheme of Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>21AC1ME02</td>
<td>Engineering Projects in Community Services</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II – Semester (I – Year)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Subject</th>
<th>Hours Per Week</th>
<th>Scheme of Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21BS2MT02</td>
<td>Advanced Calculus for Engineers</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>21BS2CH01</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>21ES2ME01</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>21ES2CS01</td>
<td>Problem Solving using C</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>21BS2CH02</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>21ES2CS02</td>
<td>Problem Solving using C - Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>21ES2ME02</td>
<td>Engineering Prototyping Lab</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>18</td>
<td>210</td>
</tr>
</tbody>
</table>

Mandatory Course (Non-Credit)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Subject</th>
<th>Hours Per Week</th>
<th>Scheme of Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>21MC2HS02</td>
<td>Environmental Science</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>21AC2HS01</td>
<td>Social and Health Consciousness</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Matrix Algebra and Calculus
(Common to ME/ EEE/ECE/CSC/ CDS/CSM/CSO)

Pre-requisite: Basics of Matrices, Differentiation and Integration

Course Objectives:
1. Understand various types of matrices, properties and rank of the matrix to find the solution for system of equations, if it exists.
2. Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form of a matrix.
3. Geometrical approach to the mean value theorems and their applications to the mathematical problems.
4. Evaluation of surface areas and volumes of revolutions of curves.
5. Evaluation of improper integrals using Beta and Gamma functions.
6. Solve first and higher order differential equations of various types.
7. Identify the methods of solving the differential equations of first and higher order applications namely, orthogonal trajectories, and Newton’s law of cooling, Natural growth and decay, Electrical circuits.

Course Outcomes: After learning the contents of this paper the student must be able to

1. Determine the rank of a matrix, solution of the system of equations, Eigen values and Eigen vectors of the matrix also canonical form of quadratic form by orthogonal transformations.
2. Solve the applications of mean value theorems of the mathematical problems.
3. Evaluate applications of Definite integrals and improper integrals using Beta and Gamma functions.
4. Apply first and higher order differential equations to solve problems like orthogonal trajectories, Newton's law of cooling, Natural growth and decay, Electrical circuits.

MODULE I
Unit 1: MATRICES

Unit 2: LINEAR SYSTEM OF EQUATIONS
Solution of a linear algebraic system of equations (homogeneous and non-homogeneous). Gauss’s-Elimination and LU decomposition method.

MODULE II
Unit 1: EIGEN VALUES AND EIGEN VECTORS
Symmetric, Hermitian, skew-symmetric, skew-Hermitian, orthogonal and unitary matrices;
Determination of eigenvalues and eigenvectors of a matrix, properties of eigenvalues and eigenvectors (without proof), Cayley-Hamilton theorem (without proof), Diagonalization of a matrix, Orthogonal diagonalization of symmetric matrices.

Unit 2: QUADRATIC FORMS
Definiteness and nature of a quadratic form, reduction of quadratic form to canonical forms by orthogonal transformation.

MODULE III

Unit 1: DIFFERENTIAL CALCULUS
Mean Value Theorems: Rolle’s Theorem, Lagrange’s theorem (Statement and Geometrical Interpretation) Cauchy’s mean value theorem. Taylor’s, Maclaurin’s series, applications and approximation of a function by Taylor’s series.

Unit 2: INTEGRAL CALCULUS
Applications of definite integrals to evaluate surface areas and volumes of revolution of curves (only in Cartesian coordinates).
Definition of improper integral: Beta and Gamma functions and their applications.

MODULE IV

Unit 1: FIRST ORDER ODE
Geometric interpretation of solutions of first order ODE \(\frac{dy}{dx} = f(x, y) \), Exact differential equations, Integrating factors, Linear and Bernoulli’s equations.

Unit 2: APPLICATIONS

MODULE V

Unit 1: ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER
Higher order homogeneous and non-homogeneous linear differential equations with constant coefficients. Non-homogeneous of the type \(e^{ax}, \cos ax, \sin ax, x^k, e^{ax}V \) and \(x^kV \). Method of variation of parameters.

Unit 2: LDE WITH VARIABLE COEFFICIENTS
Cauchy-Euler’s and Legendre’s differential equations. Applications: Electrical Circuits.

TEXT BOOKS:

REFERENCE BOOKS:
MOOC Courses:

1. Differential Equations: https://nptel.ac.in/courses/111/102/111102133/
2. Calculus: https://nptel.ac.in/courses/111/107/111107108/
3. Calculus: https://nptel.ac.in/courses/111/105/111105122/

E- Books

1. Advanced Engineering Mathematics by R.K. Jain
 https://1lib.in/book/16822856/8e87eb
3. Advanced Engineering Mathematics by Erwin kreyszig
 https://1lib.in/book/1213502/92e465
4. Advanced Modern Engineering Mathematics by Glyn James
 https://1lib.in/book/1204739/431eb2

CO-PO/PSO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 – Low
Subject Code: 21BS1PH01

APPLIED PHYSICS
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO)

Pre-requisite: Basic definitions and concepts of Intermediate Physics (10+2)

Course Objectives:
1. The course aims at making students to understand the basic concepts of Principles of Physics in a broader sense with a view to lay foundation for the various engineering courses.
2. Student will be able to demonstrate competency and understanding of the concepts found in Quantum Mechanics, Fiber optics and lasers, Semiconductors physics and Electromagnetic theory and a broad base of knowledge in Physics.
3. The graduates will be able to solve non-traditional problems that potentially draw on knowledge in multiple areas of Physics.
4. To study applications in engineering like memory devices, transformer core and electromagnetic machinery

Course Outcomes:
1. Explain the fundamental concepts on Quantum and potential behaviour of matter in its micro state and its potential applications
2. Determine the characteristics and properties of material of semiconductor and Optoelectronics
3. Explain the principle, working and application of lasers and optical fibres.
4. Apply the properties of magnetic, superconducting and dielectric materials in engineering applications

Module I Quantum Mechanics (8hr)

Unit 1: Quantum Mechanics -I
Introduction to quantum physics, Black body radiation, Planck’s law, Photoelectric effect, Compton Effect, de-Broglie’s hypothesis, Wave-particle duality, Davisson and Germer experiment,

Unit 2: Quantum Mechanics -II
Heisenberg’s Uncertainty principle, Born’s interpretation of the wave function, Schrodinger’s time independent wave equation, Particle in one dimensional box, introduction of quantum computing devices.

Module II Semiconductors (8hr)

Unit 1: Semiconductor Physics
Calculation of charge carrier concentration in Intrinsic and extrinsic semiconductor, Dependence of Fermi level on carrier concentration and temperature of Intrinsic and Extrinsic semiconductors, p-n junction diode, Zener diode and their V-I Characteristics, Transistors (BJT): Construction, Principle of operation, Hall Effect.
Unit 2: Optoelectronic Devices
Direct and indirect band gap of semiconductor, LED, and Semiconductor photo detectors: Solar cell, PIN & APD and their structure, working principle and Characteristics

Module III: Dielectrics (8hr)
Unit 1: Dielectrics-I
Electric dipole, dipole moment, dielectric constant, polarizability, electric susceptibility, displacement vector, electronic, ionic and orientation polarizations and calculation of their polarizabilities
Unit 2: Dielectrics-II
Internal field, Clausius-Mossotti relation, Ferroelectricity-BaTiO3 structure, Piezoelectricity, Pyroelectricity, Engineering applications of dielectrics

Module IV: Lasers and Fibre Optics (8hr)
Unit 1: Lasers

Unit 2: Fiber Optics
Introduction to fiber optics, Construction and working principle of Optical fiber, Acceptance angle, Acceptance cone and Numerical aperture, Step and Graded index fibres, Losses associated with optical fibres, Applications of optical fibres.

Module V: Magnetic Properties of Materials and Superconductivity (8hr)
Unit 1: Magnetic Properties Materials
Origin of magnetic moment, Bohr magneton, classification of dia, para and ferro, hysteresis curve based on domain theory, soft and hard magnetic materials, properties of anti-ferro and ferri magnetic materials, Applications of magnetic materials

Unit 2: Superconductivity
Superconductivity phenomenon, Meissner effect, BCS theory, Type I Type II Superconductors & introduction of Josephson Effect, Engineering applications of superconductivity

Text Books:
1. Applied Physics, Dr. M. N. Avadhanulu, Dr. TVS Arun Murthy, - S Chand and Company Ltd. Publications.

Reference Books:
3. Modern Engineering Physics by Dr.K.Vijaya Kumar, Dr. S.Chandralingam, S.CHAND & COMPANY LTD., Publishers.

MOOC Courses:
1. “Semiconductor Optoelectronics” By Prof. M. R. Shenoy, Department of Physics, IIT Delhi NPTEL visit http://nptel.iitm.ac.in

CO-PO Mapping Chart

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low
ENGLISH
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO/ME)

Prerequisite(s):

1. Basic knowledge of English language
2. Structure of Sentences/ Sentence formation
3. Basic Grammar rules (LSRW Skills)
4. Basic Communication Skills

Course Objectives

1. To improve the language proficiency of students in English with an emphasis on vocabulary, Grammar, Reading and Writing skills.
2. To comprehend the given texts and respond appropriately
3. To be able to integrate their ideas with those of others using summary, paraphrase, analysis, and synthesis of relevant sources.
4. To develop study skills and communication skills in formal and informal situations.
5. The students will analyse work(s) of literature in one or more interpretive contexts or frameworks

Course Outcomes

After undergoing this course, students will be able to:

1. Understand explicit and implicit meaning of a text through known and unknown passages.
2. Demonstrate Language skills in both formal and informal communication.
3. Construct sentences using logical flow of thought and organize ideas.
4. Select appropriate words, phrases & grammatical units and apply them in both spoken & written communications.

Module I ‘The Raman Effect’
UNIT 1: The Raman Effect

UNIT 2: Vocabulary- The concept of Word formation, Use of Suffix & Prefixes.
Grammar-Identifying common errors in Articles.
Reading Skills- Reading and its importance, techniques of effective reading.
Writing Skills- Sentence structures, Phrases and clauses, Punctuation, Techniques for writing precisely, Paragraph writing, organises principles (coherence & cohesion) of paragraph in documents.

Module II My Struggle for an Education
UNIT 1: My Struggle for an Education

UNIT 2: Vocabulary- Synonyms and Antonyms, Homophone, Homonym, Homograph, Prepositions and Phrasal verbs
Grammar- Identifying Common errors in Noun-pronoun Agreement and Subject-verb
Agreement.

Reading- Improving Comprehension Skills, Techniques for Good Comprehension **Writing**- Format of a Formal Letter, Letter of complaint & Requisition, Job Application and Resume.

Module III ‘Blue Jeans’
UNIT 1: ‘Blue Jeans’

UNIT 2: **Vocabulary**: Acquaintance with Prefixes and Suffixes from Foreign Languages, to form Derivatives-Words from Foreign Languages and their Use in English.
Grammar: Misplaced Modifiers, Info-Transfer, Tenses.
Reading: Sub-skills of Reading- Skimming and Scanning
Writing: Nature and Style of effective writing- Defining- Describing (objects, Places and Events) Classifying- providing examples or evidence.

Module IV What Should You Be Eating
UNIT 1: What Should You Be Eating

UNIT 2: **Vocabulary**: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Comprehension- Intensive Reading and Extensive Reading
Writing: Writing Practices--Writing Introduction and Conclusion - Essay Writing.

Module V How a Chinese Billionaire Built Her Fortune’
UNIT 1: How a Chinese Billionaire Built Her Fortune

UNIT 2: **Vocabulary**: Technical Vocabulary and their usage.
Grammar: Practice exercises in common mistakes, Active & Passive Voice
Reading: Reading Comprehension-Exercises.

Textbook:

E-books:
High School English Grammar (issuhub.com)

References:

Equivalent MOOC Courses:
1. http://nptel.ac.in/courses/109106066/
2. http://nptel.ac.in/courses/109106067/
3. http://nptel.ac.in/courses/109104030/
4. http://nptel.ac.in/courses/109104031/
6. Technical English for Engineers - Course (nptel.ac.in)

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
</tbody>
</table>
Basic Electrical & Electronics Engineering
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO)

Pre-requisite: Basic Mathematics & Physics

Course Objectives:
1. To introduce the concepts of electrical circuits and their components
2. To understand DC circuits and AC single-phase & three-phase circuits
3. To study and understand the different types of AC machines.
4. To introduce the concept of power, power facto and its improvement.
5. To introduce the concepts of diodes & transistors.

Course Outcomes:
At the end of the course student will be able to do
1. To analyse the electrical circuits with DC excitation.
2. To analyse electrical circuits with AC excitation
3. To Explain the working principles of electrical machines
4. To Analyse the characteristics of Electronic devices like diodes and transistors

Module I: D.C. Circuits
UNIT 1: Introduction to Electrical Circuits
Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, Voltage and current divide rule, source transformation technique, Mesh and Nodal analysis, star delta conversion, analysis of simple circuits with dc excitation.

Unit 2: Network Theorems
Superposition, Thevenin’s, Norton’s theorems with simple problems.

Module II: A.C. Circuits
UNIT 1: Single Phase AC Circuits
Representation of sinusoidal waveforms, Average and RMS values, peak factor and Form factor. Real power, Reactive power, apparent power, power factor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series and parallel). Resonance in series RLC circuits.

UNIT 2: Three Phase AC Circuits
Three-phase balanced circuits, voltage and current relations in star and delta connections.

Module III: Electrical Machines
Unit 1: DC Machines: Construction and working principle of DC generators, EMF equation, and working principle of DC motors, Torque equations, Speed control of DC motors.

Module IV: Diodes & Rectifiers
Unit 1: P-N Junction And Zener Diode: Principle of Operation of Diode, Volt-Ampere characteristics, Zener diode characteristics, applications.

UNIT 2: Rectifiers: P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier.

Module V: Bipolar Junction Transistors

UNIT 2: Field Effect Transistor (FET): MOSFET, Input – output characteristics, Applications.

TEXT BOOKS:

REFERENCE BOOKS:
4. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.

Web Resources:
1. https://nptel.ac.in/courses/108/104/108104139/
2. https://nptel.ac.in/courses/117/103/117103063/

E- Books:
1. https://www.academia.edu/42933156/Basic_Electrical_Engineering.VK.Mehta

<table>
<thead>
<tr>
<th>CO-PO/PSO Mapping Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3/2/1 indicates strength of correlation)3 – High; 2 – Medium; 1 - Low</td>
</tr>
<tr>
<td>Course Outcomes (COs)</td>
</tr>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
</tbody>
</table>
BUSINESS ECONOMICS AND FINANCIAL ANALYSIS
(Common to CSE/ECE/EEE/ME/CSM/CSD/ CSC/CSO)

Pre-requisite: Nil

Course Objectives:
1. Describe concepts of business economics and demand analysis to help in optimal decision making in business environment
2. Differentiate the functional relationship between Production and factors of production and able to compute breakeven point to illustrate the various uses of breakeven analysis
3. Identify various market structures and discuss their implications for resource allocation
4. Explain various accounting concepts and different types of financial ratios for knowing financial positions of business concern.
5. Demonstrate an understanding of the concept of capital budgeting and allocations of the resources through capital budgeting methods and compute simple problems for project management.

Course Outcomes:
1. Students will be able to understand economics and business economic concepts
2. Students will be able to differentiate different business organisations and nurture the idea of start-ups
3. Students will be able to analyze operations of markets under varying competitive conditions
4. Apply accounting concepts and methods to interpret financial statements for evaluating the financial position and performance of organizations

Module I INTRODUCTION TO BUSINESS AND ECONOMICS
Unit-1: Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company

Module II DEMAND AND SUPPLY ANALYSIS
Unit-1: Elasticity of Demand: Demand, Law of Demand, Elasticity, Types of Elasticity, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand.
Unit-2: Demand Forecasting: Steps in Demand Forecasting, Methods of Demand Forecasting.
Supply Analysis: Determinants of Supply, Supply Function & Law of Supply

Module III PRODUCTION, COST, MARKET STRUCTURES & PRICING
Unit-1: **Production Analysis**: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions. Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Module IV INTRODUCTION TO FINANCIAL ACCOUNTING

Unit-1: **Financial Accounting**: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance

Unit-2: **Final Accounts**: Elements of Financial Statements, Preparation of Final Accounts: Trading account, Profit & Loss Account, Balance sheet

Module V CAPITAL BUDGETING

Unit 1: **Capital and its Sources**: Significance, types of capital, estimation of fixed and working capital requirements, methods and sources of raising capital

Unit 2: **Capital budgeting**: Features of capital budgeting proposals; Methods of capital budgeting: Payback period, accounting rate of return (ARR), net present value method and internal rate of return method (simple problems).

Text Books:

Reference Books:

Web Resources:
1. https://books.google.co.in/books/about/Managerial_economics_and_financial_analysis.html
4. http://books.google.com/books/about/Managerial_economics_and_financial_analysis.html
(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
</tbody>
</table>
B.Tech I Year–I Sem

Subject Code: 21BS1PH02

Applied Physics laboratory

(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO branches)

Pre-requisite: Concepts of Applied Physics Theory and knowledge of intermediate (10+2) physics

Course Outcomes
1. Analyse the parameters of quality factor and time constant of a given LCR and RC circuits respectively.
2. Design the equivalent circuit of semiconductor optoelectronics devices to study their V-I characteristics.
3. Apply the electromagnetism laws to determine the relationship between the current and magnetic field.
4. Apply the concepts of optics for study the characteristics of laser & fiber optical devices.

List of Experiments
Perform any 8 of the following experiment
1. Energy gap of P-N junction diode: To determine the energy gap of a semiconductor
2. Solar cell: To study the V-I Characteristics of solar cell
3. Stewart &Gee’s: To study the magnetic field along the axis of a circular coil carrying Current
4. R-C Circuit: To study the decay of current in a C-R circuit and to determine RC time constant.
5. Photo electric effect: To determine the plank’s constant ‘h’ from the stopping potential measured at different frequencies (wave length) of light.
6. Light emitting diode: To study the V-I Characteristics of light emitting diode
7. Laser diode characteristics: To study the V-I Characteristics of LASER source
8. Optical fiber: To determine the Numerical Aperture of an optical fiber
9. Hall Effect: To determine Hall Coefficient and Nature of charge carriers of a given semiconductor
10. Determine the V-I Characteristics of Zener diode

Text Books:
1. Laboratory manual of Engineering Physics, Dr. Y Aparna, Dr.K.Venkateswara Rao, VGS techno series, 2010.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

CO-PO Mapping Chart
(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low
HR21

B.Tech I Year–I Sem

Subject Code: 21HS1EG02

L T P C

0 0 3 1

English Language Communication Skills Laboratory

(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO/ME)

Pre-requisite: The knowledge of following concepts is essential to understand the subject

1. Basic knowledge of English language
2. Structure of Sentence/ Sentence formation
3. Basic Grammar rules (LSRW Skills)
4. Basic Communication Skills

Course Objectives:

1. To facilitate computer-assisted multimedia instruction enabling individualized and independent language learning
2. To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
3. To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
4. To improve the fluency of students speaking in English and neutralize their mother tongue interference.
5. To train students use language appropriately speaking in various activities like role plays, group discussions, interviews and presentation skills etc.

Course Outcomes:

1. Acquire vocabulary and use it contextually
2. Apply listening and speaking skills effectively
3. Develop proficiency in academic reading and writing
4. Build up the possibilities of job prospects

Note: All the given below exercises have to be performed

Exercise I
CALL Lab- Introduction to Speech Sounds
Understand: Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening.

ICS Lab- Ice-Breaking activity and JAM session
Understand: Spoken vs. Written language- Formal and Informal English.
Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others, Discussion on eating habits

Exercise II
CALL Lab- Structure of Syllables –
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms-Sentence Stress – Intonation. Testing Exercises
ICS Lab- **Features of Good Conversation**
Understand: Strategies for Effective Communication.
Practice: Situational Dialogues – Role-Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette

Exercise III
CALL Lab- **Word Stress & Formation**
Understand: Errors in Pronunciation-the Interference of Mother Tongue (MTI).
Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation, Testing Exercises- Listening for General/ Specific Details. Practice: Listening Comprehension Tests. Testing Exercises

ICS Lab- **Descriptions and Giving Directions**
Understand: Descriptions- Narrations- Giving Directions and Guidelines.
Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise IV
CALL Lab - **Interpersonal Communication Skills & Building Vocabulary**
Starting a conversation – responding appropriately and relevantly – using the right body language –Discourse Skills- using visuals-Graphical organization - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word

ICS Lab- **Oral Presentation Skills**
Understand: Structured Talks - Non-verbal Communication- Presentation Skills-Individual and Group.
Practice: Making a Short Speech – Extempore- Making a Presentation- Individual and Group

Exercise V
CALL Lab- **Reading Skills**
Understand: Reading Comprehension and different techniques of it- Extensive- Intensive- Skimming- Scanning

ICS Lab - **Group Discussion- Interview Skills**
Understand: Group Discussion- Interview Skills.
Practice: Group Discussion- Mock Interviews through Tele-conference & video-conference. Etiquette

Lab Manuals

Suggested Software
1. Cambridge Advanced Learners’ English Dictionary with CD.
2. Grammar Made Easy by Darling Kindersley.
3. Punctuation Made Easy by Darling Kindersley.
5. English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
7. TOEFL and GRE (KAPLAN, AARCO and BARRONS, USA, Cracking GRE by CLIFFS).

Reference Books:
1. Effective Communication Skills: Tips on How to Improve Your Social Skills and Interact with Others Effectively by Robert Cunningham, Independently Published, 2018

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
</tbody>
</table>

CO-PO Mapping Chart
(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low
B.Tech I Year–I Sem

Subject Code: 21ES1EE02

L T P C
0 0 3 1.5

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO)

Pre-requisite: Basic Electrical and Electronics Engineering.

Course Objectives:
1. To introduce the concepts of electrical circuits and its components.
2. To get the practical experience with operation and applications of electromechanical energy conversion devices.
3. To get the knowledge of the different electronic devices like diodes, rectifiers, transistors.
4. To learn how to measure the electrical quantities with different measuring devices and with CRO

Course Outcomes:
At the end of the course student will be able to do
1. Analyse the electrical circuits using network laws.
2. Understand the operation and applications of electromechanical energy conversion devices.
3. Understand the working of various electrical and electronic components
4. Analyse the characteristics of various electronics components.

PART A: ELECTRICAL
Note: All experiments are mandatory
1. Verification of ohms law
2. Verification of KVL and KCL
4. Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta star, Star-Star) in a Three Phase Transformer
5. Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits.
6. Performance Characteristics of a Three-phase Induction Motor
7. Performance Characteristics of a DC Shunt Motor

PART B: ELECTRONICS
Note: Any three experiments should be conducted
1. Study and operation of (i) multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv) CRO.
2. PN Junction diode characteristics
3. Zener diode characteristics and Zener as Voltage Regulator
4. Half Wave Rectifier Circuit
5. Full Wave Rectifier Circuit
Text Books:
1. Basic Electrical and Electronics Engineering – M S Sukija TK Nagasarkar Oxford University

Reference Books:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
</tbody>
</table>
Engineering Project in Community Service
(Common to All Branches)

Pre-requisite: Nil

Course Objectives:
1. Apply domain knowledge to solve the real world problems.
2. Identify and acquire new knowledge as a part of the problem solving / design process.
3. Design products on multidisciplinary concepts and an appreciation for the contributions from individuals from multiple disciplines.
4. Build a role that their discipline can play in social contexts.
5. Provide significant service to the community while learning; gain an understanding of the role that engineering (and their discipline) can play in society.

Course Outcomes:
1. Formulate the idea with the clear context
2. Derive the functional and non-functional requirements using Design Thinking Process.
3. Contribute as an individual and in team.
4. Develop a project addressing the ethical and societal needs.

Module I
Unit 1: Problem Identification
Introduction to EPICS, Idea Generation (brainstorming/workshop/seminar), Brainstorming

Unit 2: Societal Survey
Rural area Survey (societal issues), interaction with NGOs, Idea Generation and Group Discussions.

Module II
Unit 1: Specification Development
Customer Requirement, Design Constraints, Engineering Specifications

Unit 2: Product Survey
Community Partner allotment, Design Thinking activity

Module III
Unit 1: Conceptual Design
Decision matrix, community partner interview, Brainstorming (possible solutions)

Unit 2: Poster Presentation
Documentation & Team wise presentation

Module IV:
Unit 1: Project Specification
Prototype-1 Development, Testing, customer feedback
Unit 2: Project Specification
Prototype-1 presentation, Feedback Report of customer & advisor, Action plan for the next prototype

Module V:

Unit 1: Detailed Design
Video preparation on conceptual design, Prototype-2 Development, Testing, customer feedback, Presentation

Unit 2: Detailed Design
Make progress on the project and appropriately engage project partners, Complete Design review feedback summary, and Individual and Project documentation, Project Expo

Text Books:

Reference Books:

Web Resources:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>CO2</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>CO3</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>CO4</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low
Advanced Calculus
(Common to ME/ EEE/ECE/CSE/CSC/CSD/CSM/CSO)

Pre-requisite: Mathematics of 10+2 level

Course Objectives: To provide the student with

1. Compute partial derivatives, composite functions of several variables.
2. Finding maxima and minima of function of two and three variables.
3. Evaluate multiple integrals and apply the same to solve engineering problems.
4. Explain properties of vector operators. To determine solenoidal/ irrotational vectors, directional derivatives of vectors.
5. The skill of calculating work done by a field and flux across a surface.
6. The skill of using specialized theorems for fast computation of work and flux.
7. Solve partial differential equations using method of separation of variables and their applications to solve heat and wave equations.

Course Outcomes: After learning the contents of this paper the student must be able to

CO1: Compute the extreme values of functions of two variables with/ without constraints.
CO2: Find the areas, volumes, Centre of mass and Gravity for cubes, sphere and rectangular parallelepiped by using multiple integrals.
CO3: Apply method of separation of variables to solve problems like one dimensional wave and heat equations that arise in engineering branches.
CO4: Calculate scalar potential for a vector, directional derivative of a scalar point function also length of a curve, area between the surfaces & volumes of solids using vector integrations

Module I
Unit 1: PARTIAL DIFFERENTIATION
Definitions of Limit and continuity. Partial Differentiation and total differentiation, Jacobian, Functional dependence & independence, Taylor’s series in two variables.

Unit 2: APPLICATIONS OF PARTIAL DIFFERENTIATION
Maxima and Minima of functions of two variables without constraints and with constraints, Method of Lagrange Multipliers.

Module II
Unit 1: MULTIPLE INTEGRALS
Double integrals: Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), change of variables (Cartesian to polar coordinates).
Triple Integrals: Evaluation of triple integrals, Change of variables (Cartesian to Spherical and Cylindrical polar coordinates).
Unit 2: APPLICATIONS OF MULTIPLE INTEGRALS
Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals.

Module III
Unit 1: FOURIER SERIES
Introduction, Fourier series of periodic functions, Fourier series of even and odd functions, Change of interval, Half range sine and cosine series.

Unit 2: PARTIAL DIFFERENTIAL EQUATIONS
Classification of second order partial differential equations, method of separation of variables for second order partial differential equations, Solution of one-dimensional wave and heat equations.

Module IV
Unit 1: VECTOR DIFFERENTIATION
Introduction: Scalar and vector point functions, Concepts of gradient, divergence and curl of functions in Cartesian framework, Solenoidal fields, irrotational fields.

Unit 2: LINE INTEGRALS
Evaluation of the line integral, concept of work done by a force field, Conservative fields and Potentials.

Module V
Unit 1: SURFACE AND VOLUME INTEGRATION
Surface integration: Evaluation of surface and volume integrals, flux across a surface.

Unit 2: VECTOR INTEGRAL THEOREMS
Vector integral theorems: Green’s, Gauss and Stokes theorems (without proofs) and their applications.

TEXT BOOKS:

REFERENCE BOOKS:

MOOC Courses:
1. Functions of several variables: https://nptel.ac.in/courses/111/104/111104125/
2. Partial Differential equations: https://nptel.ac.in/courses/111/101/111101153/
3. Multivariable calculus: https://nptel.ac.in/courses/111/105/111105122/
CO-PO/PSO Mapping Chart

(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 – Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
ENGINEERING CHEMISTRY
(Common to CSE/EEE/ECE/MECH/CSM/CSD/CSC/CSO)

Pre-requisite: Basic knowledge of chemistry (Physical, Organic, Inorganic and Analytical chemistry)

Course Objectives:
1. To bring adaptability to the concepts of chemistry and to acquire the required skills to become a perfect engineer.
2. To impart the basic knowledge of atomic, molecular and electronic modifications which makes the student to understand the technology based on them.
3. To acquire the knowledge of electrochemistry, corrosion and water treatment which are essential for the Engineers and in industry.
4. To acquire the skills pertaining to spectroscopy and to apply them for medical and other fields.
5. To impart the knowledge of genetics and biomolecules.

Course Outcomes:
After completion of this course student will able to do

CO1: Explain the configuration and structure of the molecules with theories of bonding and qualitative and quantitative analysis of molecules by spectroscopy

CO2: Identify the suitable method for the treatment of given water sample for industrial and domestic purpose.

CO3: Explain the concepts of electrochemistry and corrosion with their engineering applications.

CO4: Understand the concept of genetics and biomolecules.

Module I: MOLECULAR STRUCTURE
UNIT 1: Molecular structure and Theories of Bonding
Atomic and Molecular orbitals. Linear Combination of Atomic Orbitals (LCAO), molecular orbitals of diatomic molecules, molecular orbital energy level diagrams of N₂, O₂ and F₂ molecules. π molecular orbitals of butadiene and benzene.

UNIT 2: Crystal Field Theory (CFT)
Salient Features of CFT – Crystal Field Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries. Band structure of solids and effect of doping on conductance.

Module II: WATER AND ITS TREATMENT
UNIT 1: PROPERTIES OF WATER
UNIT 2: TREATMENT OF WATER

Module III: ELECTROCHEMISTRY AND CORROSION
UNIT 1: Electrochemistry
Electrochemical cells - electrode potential, standard electrode potential, types of electrodes-calomel, Quinhydrone and Glass electrode. Nernst equation, Determination of pH of a solution by using quinhydrone and glass electrode. Electrochemical series and its applications. Numerical Problem
Batteries: Primary battery (Lithium cell) and Secondary battery (lead acid and lithium ion cell).

UNIT 2: Corrosion

Module IV: SPECTROSCOPY AND ITS APPLICATIONS
UNIT 1: UV-Visible and IR Spectroscopy
Principles of IR spectroscopy, types of vibrations (stretching & bending), selection rules, instrumentation, number of fundamental vibrations, functional group interpretation and applications of IR spectroscopy.

UNIT 2: NMR Spectroscopy
Introduction and Principle to NMR, selection rules, Instrumentation, Desheilding and shielding, Chemical shifts, Measurement of chemical shifts, Interpretation of number of PMR signals in molecules (acetaldehyde, ethanol, vinyl chloride, acetone, benzene and toluene) and applications. Introduction to Magnetic resonance imaging (MRI) and its applications.

Module V: GENETICS AND BIOMOLECULES
UNIT 1: Genetics
Introduction to cell and its components, gene, mendel’s laws, Concept of segregation and independent assortment. Concept of genetic material passes from parent to offspring. Concept of allele, Gene mapping, Gene interaction, Gene editing, Introduction to CRISPR technology Concept of genetic code.
UNIT 2: Biomolecules

Introduction, Molecules of life- carbohydrates (Glucose and fructose), Amino acids (Types and classification), peptides and proteins (structural and active sites), DNA (single/double stranded) RNA (Types). Protein structural predictions-Homology modelling, Biological Data bases (NCBI, RCSB-PDB)

Text Books:
1. Engineering chemistry by Dr. Jaya Shree-Wiley Publications, 6th edition, 2018

Reference Books:
1. Engineering Chemistry by Jain and Jain, Dhanpath ray publishing company, 2018
2. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher, 2018
4. Engineering chemistry by Dr. Bharathi Kumari- VGS Publications 10th edition, 2018
5. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons, 2017

E-Books: http://bcs.whfreeman.com/vollhardt schore5e/default.asp

Equivalent MOOC Courses: Concepts of Chemistry for Engineering
https://onlinecourses.nptel.ac.in/noc21_cy49/announcements?force=true

<table>
<thead>
<tr>
<th>CO-PO Mapping Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low</td>
</tr>
<tr>
<td>Course Outcomes (COs)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
</tbody>
</table>
Engineering Graphics

(Common to ME, EEE, ECE, CSE, CSM, CSO, CSD and CSC)

Pre-requisite: Basic Geometry and maths.

Course Objectives:
1. To provide basic concepts in engineering drawing.
2. To impart knowledge about standard principles of orthographic projection of objects.
3. To draw sectional views and pictorial views of solids.
4. To know development of different types of surfaces.
5. To draw Isometric to Orthographic Projections and Vice-versa.

Course Outcomes:
CO1 – Construct engineering curves and different scales used in engineering graphics.
CO2 – Demonstrate the orthographic projections of all geometry.
CO3 – Illustrate the position of the sectional planes for given sections of solids.
CO4 – Convert the isometric to orthographic projections and orthographic to isometric projections of solids.

Module I
Unit 1: Introduction to Engineering Drawing & CAD
Drawing Instruments and their uses, types of lines, Lettering, Rules of dimensioning. Construction of polygons - practice only. Conic Sections: Ellipse, Parabola, Hyperbola including the Rectangular Hyperbola - General method only. Introduction to CAD software packages commands.

Unit 2: Engineering Curves & Introduction to Scales
Cycloid, Epicycloid and Hypocycloid, Involute of a circle, Scales – Construction of Plain & Diagonal scales.

Module II
Unit 3: Orthographic Projections of Points and Lines
Orthographic Projection of points and straight lines: Projection of points placed in different quadrants, Projection of straight lines inclined to one and two reference planes placed in first quadrant only.

Unit 4: Orthographic Projections of Planes
Projections of Planes inclined to one and two reference planes placed in first quadrant only.

Module III
Unit 5: Orthographic Projections of Solids
Projections of Solids: Projections of Regular Solids – Regular Polyhedra, solids of revolution, Axis inclined to both planes.

Unit 6: Sections of Solids
Sections and Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views
Module IV
Unit 7: Development of Surfaces
Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone.

Unit 8: Intersections of Solids
Intersection of Prism Vs Prism, Cylinders Vs Cylinder - simple treatment only.

Module V
Unit 9: Isometric Projections/views:

Unit 10: Transformation of Projections:
Conversion of Orthographic Views to Isometric Views and Isometric views to orthographic views.

Text Books:

Reference Books:

Mooc Courses :
1. https://nptel.ac.in/courses/112/104/112104172/
2. https://nptel.ac.in/courses/112/103/112103019/
4. https://www.greatlearning.in/academy/learn-for-free/courses/engineering-graphics-drawing

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>PO 1: H, PO 2: M</td>
</tr>
<tr>
<td>CO2</td>
<td>PO 1: H, PO 2: M</td>
</tr>
<tr>
<td>CO3</td>
<td>PO 1: H, PO 2: M</td>
</tr>
<tr>
<td>CO4</td>
<td>PO 1: H, PO 2: M</td>
</tr>
</tbody>
</table>

CO-PO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low
Problem Solving using C
(Common to CSE/CSM/CDS/CSC/CSO/ECE/EEE/IOT)

Prerequisite: NIL

Course Objectives:
1. To learn the fundamentals of computers.
2. To understand the various steps in program development.
3. To learn the syntax and semantics of C programming language.
4. To learn the usage of structured programming approach in solving problems.

Course Outcomes:
CO1 - Apply the fundamentals of computer and programming language, to draw flow chart, algorithm to solve given program.
CO2 - Comprehend the general structure of C program using control structures, functions, recursion to support reusability.
CO3 - Apply searching and sorting algorithms for the given list of elements
CO4 - Design an application to solve real world problem.

Module I
Unit 1: Introduction to components of a computer
Memory, processor, I/O Devices, storage, operating system; Concept of assembler, compiler, interpreter, loader and linker.

Unit 2: Introduction to C Programming Language
History of C, Basic structure of a C program, Process of compiling and running a C program; C Tokens: Keywords, Identifiers, Constants, Strings, Special symbols, Variables, Data types; Operators, Precedence of Operators, Expression evaluation, Formatted Input/Output functions, Type Conversion and type casting.

Module II
Unit 1: Decision Making Statements and Unconditional Control Structures
Simple if, if-else, else if ladder, Nested if, switch case statement; break, continue and goto statements.

Unit 2: Loop control statements
for, while and do while loops, nested loops.

Module III
UNIT 1: Arrays:
Introduction, Single dimensional array and multi-dimensional array: declaration, initialization, accessing elements of an array; Operations on arrays: traversal, reverse, insertion, deletion, merge, search; Strings: Arrays of characters, Reading and writing strings, String handling functions, Operations on strings; array of strings.
UNIT 2: Functions
Concept of user defined functions, Function declaration, return statement, Function prototype, Types of functions, Inter function communication, Function calls, Parameter
passing mechanisms; Recursion; Passing arrays to functions, passing strings to functions; Storage classes.

Module IV

UNIT 1: Pointers:
Basics of pointers, Pointer arithmetic, pointer to pointers, array of pointers, Generic pointers, Null pointers, Pointers as functions arguments, Functions returning pointers; Dynamic memory allocation.

UNIT 2: Structures
Structure definition, initialization, structure members, nested structures, arrays of structures, structures and functions, structures and pointers, self-referential structures; Unions: Union definition, initialization, accessing union members; bit fields, typedef, enumerations, Preprocessor directives.

Module V

UNIT 1: Preprocessor
Commonly used Preprocessor commands like include, define, undef, if, ifdef, ifndef

UNIT 2: File Handling
Concept of a file, text files and binary files, streams, standard I/O, formatted I/O, file I/O operations, error handling, Line I/O, miscellaneous functions; Applications in C.

TEXT BOOKS:

REFERENCE BOOKS:

WEB RESOURCES:
3. https://www.nptel.ac.in/courses/108106073/
CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENGINEERING CHEMISTRY LAB
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO)

Pre-requisite: Concepts of Chemistry at 10+2 level

Course Objectives:

The student will learn

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- The measurement of physical properties like adsorption and viscosity.
- To synthesize the drug molecules and check the purity of organic molecules by thin layer chromatographic (TLC) technique.
- To quantify the sample by instrumental techniques.

Course Outcomes: The experiments will make the student gain skills on:

CO1: Estimate the hardness and chloride content in given water sample.
CO2: Determination of physical properties like acid value, surface tension and viscosity.
CO3: Apply the knowledge to synthesize drug molecules and check the purity of sample by TLC technique.
CO4: Determine the strength of the given sample by appropriate instrumental method.

List of Experiments:

Note: Any 10 of the below experiments must be conducted

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry
3. Estimation of an HCl by Conductometric titrations
4. Estimation of Acetic acid by Conductometric titrations
5. Estimation of HCl by Potentiometric titrations
6. Synthesis of Aspirin and Paracetamol
7. Estimation of copper by colorimetric method.
8. Estimation of iron by colorimetric method
10. Thin layer chromatography calculation of Rf values. Eg ortho and para nitro phenols.
11. Determination of viscosity of castor oil by using Ostwald’s viscometer
12. Determination of surface tension of a give liquid using stalagmometer.

Reference Books:

3. Laboratory manual of engineering chemistry, Bharthi kumari, VGS Techno series 1st Edition
<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Problem Solving using C Lab

(Common to CSE/CSM/CDS/CSC/CSO/ECE/EEE/IOT)

Pre-requisite: Nil

Course Objectives:

1. To learn the fundamentals of computers.
2. To understand the various steps in program development.
3. To learn the syntax and semantics of C programming language.
4. To learn the usage of structured programming approach in solving problems.

Course Outcomes:

The candidate is expected to be able to

CO1 - Formulate the algorithms for simple problems, translate given algorithms to a working and correct program, correct syntax errors as reported by the compilers.

CO2 - Identify and correct logical errors encountered during execution, represent and manipulate data with arrays, strings and structures

CO3 - use pointers of different types, create, read and write to and from simple text and binary files

CO4 - modularize the code with functions so that they can be reused

Week – 1: OPERATORS AND EVALUATION OF EXPRESSIONS

a. Design and develop a flowchart and algorithm to read a number and implement using a C program to check whether the given number is even or odd using ternary operator.

b. Design and develop a flowchart and algorithm to read two integers and implement using a C program to perform the addition of two numbers without using + operator.

c. Develop a C program to evaluate the following arithmetic expressions by reading appropriate input from the standard input device. Understand the priority of operators while evaluating expressions.

 i. 6*2/(2+1 * 2/3 +6) +8 * (8/4)
 ii. 17 – 8 / 4 * 2 + 3 - ++2
 iii. !(x > 10) && (y == 2)

d. Develop a C program to display the size of various built-in data types in C language.

Week – 2: CONTROL STRUCTURES

a. Design and develop a flowchart and algorithm to read a year as an input and find whether it is leap year or not. Implement a C program for the same and execute for all possible inputs with appropriate messages. Also consider end of the centuries.

b. Design and develop a flowchart and algorithm to find the square root of a given number N. Implement a C program for the same and execute for all possible inputs with appropriate messages. (Note: Don’t use library function sqrt(n), Hint: Use Newton-Raphson method to find the square root).
c. Design and develop a flowchart and algorithm to generate a Fibonacci sequence up to a given number N. A Fibonacci sequence is defined as follows: The first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Implement a C program for the developed flowchart/algorithm and execute the same to generate the first N terms of the sequence.

d. Design and develop a flowchart and algorithm that takes three coefficients (a, b, and c) of a Quadratic equation \((ax^2+bx+c=0)\) as input and compute all possible roots. Implement a C program for the developed flowchart/algorithm and execute the same to output the possible roots for a given set of coefficients with appropriate messages.

Week – 3: CONTROL STRUCTURES

a. Design and develop an algorithm to find the reverse of an integer number N and check whether it is PALINDROME or NOT. Implement a C program for the developed algorithm that takes an integer number as input and output the reverse of the same with suitable messages. Ex: N: 2020, Reverse: 0202, Not a Palindrome.

b. Draw the flowchart and write C Program to compute \(\sin(x)\) using Taylor series approximation given by

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots\ldots
\]

Compare the result with the built-in Library function and print both the results with appropriate messages.

c. Design and develop an algorithm and flowchart to read a three digit number and check whether the given number is Armstrong number or not. Write a C program to implement the same and also display the Armstrong numbers between the ranges 1 to 1000.

d. Design and develop an algorithm for evaluating the polynomial \(f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0\), for a given value of \(x\) and its coefficients using Horner’s method. Implement a C program for the same and execute the program for different sets of values of coefficients and \(x\).

Week – 4: ARRAYS

a. Develop, implement and execute a C program to read a list of integers and store it in a single dimensional array. Write a C program to print the second largest integer in a list of integers.

b. Develop, implement and execute a C program to read a list of integers and store it in a single dimensional array. Write a C program to count and display positive, negative, odd and even numbers in an array.

c. Develop, implement and execute a C program to read a list of integers and store it in a single dimensional array. Write a C program to find the frequency of a particular number in a list of integers.

d. Develop, implement and execute a C program that reads two matrices \(A (m x n)\) and \(B (p x q)\) and Compute the product \(A\) and \(B\). Read matrix \(A\) and matrix \(B\) in row major order respectively. Print both the input matrices and resultant matrix with suitable headings and output should be in matrix format only. Program must check the compatibility of orders of the matrices for multiplication. Report appropriate message in case of incompatibility.
Week – 5: STRINGS

a. Develop a user-defined function STRCOPY (str1, str2) to simulate the built-in library function strcpy (str1, str2) that copies a string str2 to another string str1. Write a C program that invokes this function to perform string copying. Also perform the same operation using built-in function.

b. Develop a user-defined function STRCONCT (str1, str2) to simulate the built-in library function strcat (str1, str2) that takes two arguments str1 and str2, concatenates str2 and str1 and stores the result in str1. Write a C program that invokes this function to perform string concatenation. Also perform the same operation using built-in function.

c. Develop a C program that returns a pointer to the first occurrence of the string in a given string using built-in library function strstr(). Example: strstr() function is used to locate first occurrence of the string “test” in the string “This is a test string for testing”. Pointer is returned at first occurrence of the string “test”.

d. Develop a C program using the library function strcmp (str1, str2) that compares the string pointed to by str1 to the string pointed to by str2 and returns an integer. Display appropriate messages based on the return values of this function as follows –
 - if return value < 0 then it indicates str1 is less than str2.
 - if return value > 0 then it indicates str2 is less than str1.
 - if return value = 0 then it indicates str1 is equal to str2.

Week – 6: FUNCTIONS

a. Design and develop a recursive and non-recursive function FACT (num) to find the factorial of a number, n!, defined by FACT(n) = 1, if n = 0. Otherwise FACT (n) = n * FACT(n-1). Using this function, write a C program to compute the binomial coefficient. Tabulate the results for different values of n and r with suitable messages.

b. Design and develop a recursive function GCD (num1, num2) that accepts two integer arguments. Write a C program that invokes this function to find the greatest common divisor of two given integers.

c. Design and develop a recursive function FIBO (num) that accepts an integer argument. Write a C program that invokes this function to generate the Fibonacci sequence up to num.

d. Design and develop a C function ISPRIME (num) that accepts an integer argument and returns 1 if the argument is prime, a 0 otherwise. Write a C program that invokes this function to generate prime numbers between the given ranges.

e. Design and develop a function REVERSE (str) that accepts a string arguments. Write a C program that invokes this function to find the reverse of a given string.

Week – 7: POINTERS

a. Develop a C program using pointers to compute the sum, mean and standard deviation of all elements stored in an array of n real numbers.

b. Develop a C program to read a list of integers and store it in an array. Then read the array elements using a pointer and print the value along with the memory addresses.

c. Design and develop non-recursive functions input_matrix (matrix, rows, cols) and print_matrix(matrix, rows, cols) that stores integers into a two-dimensional array and displays the integers in matrix form. Write a C program to input and print elements of a two dimensional array using pointers and functions.
d. Develop a C program to store a list of integers in a single dimensional array using dynamic memory allocation (limit will be at run time) using malloc() function. Write a C program to read the elements and print the sum of all elements along with the entered elements. Also use free() function to release the memory.

Week – 8: STRUCTURES AND UNIONS

a. Write a C program that uses functions to perform the following operations:
 i. Reading a complex number
 ii. Writing a complex number
 iii. Addition and subtraction of two complex numbers
 Note: represent complex number using a structure.

b. Write a C program to compute the monthly pay of 100 employees using each employee_s name, basic pay. The DA is computed as 52% of the basic pay. Gross-salary (basic pay + DA). Print the employees name and gross salary.

c. Create a Book structure containing book_id, title, author name and price. Write a C program to pass a structure as a function argument and print the book details.

d. Create a union containing 6 strings: name, home_address, hostel_address, city, state and zip. Write a C program to display your present address.

Week – 9: ADDITIONAL PROGRAMS

a. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: \(1 + x + x^2 + x^3 + \ldots + x^n\). For example: if n is 3 and x is 5, then the program computes 1+5+25+125. Print x, n, the sum. Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

b. Develop a C program to find the 2’s complement of a given binary number. 2’s complement is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.

c. Develop a C program to convert a Roman numeral to its decimal equivalent. E.g. check for the inputs - Roman number IX is equivalent to 9 and Roman number XI is equivalent to 11.

Week – 10: PREPROCESSOR DIRECTIVES

a. Define a macro with one parameter to compute the volume of a sphere. Write a C program using this macro to compute the volume for spheres of radius 5, 10 and 15 meters.

b. Define a macro that receives an array and the number of elements in the array as arguments. Write a C program for using this macro to print the elements of the array.

c. Write symbolic constants for the binary arithmetic operators +, -, *, and /. Write a C program to illustrate the use of these symbolic constants.
Week – 11: FILES

a. Create an employee file `employee.txt` and write 5 records having employee name, designation, salary, branch and city. Develop a C program to display the contents of `employee.txt` file.
b. Create a `studentolddata.txt` file containing student name, roll no, branch, section, address. Develop a C program to copy the contents of `studentolddata.txt` file to another file `studentnewdata.txt`.
c. Develop a C program to create a text file `info.txt` to store the information given below. Implement using a C program to count the number of words and characters in the file `info.txt`.

Test Data:

Input the file name to be opened: info.txt

Expected Output:

The content of the file info.txt are:

Welcome to IARE
Welcome to Computer Programming

The number of words in the file info.txt are: 7
The number of characters in the file info.txt are: 46

d. Given two university information files “`studentname.txt`” and “`roll_number.txt`” that contains students Name and Roll numbers respectively. Write a C program to create a new file called “`output.txt`” and copy the content of files “`studentname.txt`” and “`roll_number.txt`” into output file. Display the contents of output file “`output.txt`” on to the screen.

<table>
<thead>
<tr>
<th>studname.txt</th>
<th>roll_number.txt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asha</td>
<td>20951A1201</td>
</tr>
<tr>
<td>Bharath</td>
<td>20951A0502</td>
</tr>
<tr>
<td>Uma</td>
<td>20951A0456</td>
</tr>
<tr>
<td>Shilpa</td>
<td>20951A0305</td>
</tr>
</tbody>
</table>

Week – 12: COMMAND LINE ARGUMENTS

a. Develop a C program to read a set of arguments and display all arguments given through command line.
b. Develop a C program to read a file at command line argument and display the contents of the file.
c. Develop a C program to read N integers and find the sum of N integer numbers using command line arguments.
d. Develop a C program to read three integers and find the largest integer among three
using command line argument.

Text Books:

REFERENCE BOOKS:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Engineering Prototyping Lab
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO/ME)

Prerequisites: Practical skill

Course Objectives:
1. To provide the basic knowledge of fundamental tools used by engineers in manufacturing environment, wiring in electrical circuits, design of electronic components on PCB and knowledge on computer peripherals.
2. To gain a basic working knowledge required for the production of various engineering products.

Course Outcomes:
At the end of the course, students must be able to
1. Fabricate basic electrical circuit networks.
2. Identify and apply suitable tools for different trades of engineering processes.
3. Apply the learnt knowledge for installing operating system, presentations, and documentation.
4. Make a prototype by applying domain knowledge.

List of Experiments:

PART A: Mechanical Workshop
Note: Any Seven experiments should be conducted from all Trades
1. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
2. Fitting – (V-Fit, Dovetail Fit & Semi-circular fit)
3. Tin-Smithy – (Square Tin, Rectangular Tray & Conical Funnel)
5. Welding Practice – (Arc Welding & Gas Welding)
7. House wiring-(One lamp control using two 2-way switches (staircase wiring), Wiring of distribution box with MCB, Wiring of three bulbs - Series & parallel connections).

PART B: IT Workshop
Note: Any three experiments should be conducted
1. Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.
2. Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.
3. Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.
4. Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.
5. Hardware Troubleshooting: Students have to be given a PC which does not boot due to
improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

6. Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

7. Internet & World Wide Web: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally, students should demonstrate to the instructor, how to access the websites and email. If there is no internet connectivity preparations.

TEXT BOOKS:

1. Workshop Practice /B. L. Juneja / Cengage
2. Workshop Manual / K. Venugopal / Anuradha
3. Experiments in Basic Electrical Engineering by S.K.Bhattacharya , Rastogi- NAI.
4. Industrial Safety management by Deshmukh –TMH

REFERENCE BOOKS:

2. Workshop Manual / Venkat Reddy/ BSP
3. Residential and Commercial Industrial Electrical systems Vol.2 by Joshi-TMH
4. Residential and Commercial Industrial Electrical systems Vol.3 by Joshi-TMH
5. Industrial Safety management by Deshmukh –TMH

Web resources:

CO-PO Mapping:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>L</td>
</tr>
<tr>
<td>CO2</td>
<td>H</td>
</tr>
<tr>
<td>CO3</td>
<td>H</td>
</tr>
<tr>
<td>CO4</td>
<td>H</td>
</tr>
</tbody>
</table>

CO-PO Mapping Chart
(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low
Course Objectives:
1. Understanding the importance of ecological balance for sustainable development.
2. To educate students about natural resources and their exploitation.
3. Understanding the concepts of green chemistry and its applications.

Course Outcomes:
- **CO-1:** Understand the importance of ecosystem and ecological balance in conservation of biodiversity.
- **CO-2:** Understand the concepts of natural resources and its exploitation.
- **CO-3:** Explain the control of pollution for sustainable environment.
- **CO-4:** Explain the concepts of green chemistry and its applications.

Module I ECOSYSTEMS AND ECOLOGY

UNIT-1: Ecosystem
Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids.

UNIT-2: Ecology
Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

Module II NATURAL RESOURCES

UNIT-1: Classification of Resources
Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources.

UNIT-2: Land and Energy resources
Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

Module III BIODIVERSITY AND BIOTIC RESOURCES

UNIT-1: Biodiversity
Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit

UNIT-2: Biotic Resources
Module IV ENVIRONMENTAL POLLUTION AND SOLID WASTE

UNIT-1: Environmental pollution

Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Municipal Solid Waste management, composition and characteristics of e-Waste and its management

UNIT-2: Global Environmental Issues and Global Efforts

Module V Green Chemistry & Hazardous chemicals

UNIT-1: Green Chemistry

Introduction & Principles, green solutions for chemical energy storage, green chemistry solutions will be discussed within the fields of Chemical production: choice of feedstock, solvents, catalysts, synthesis routes including microwave and ultrasonic assisted synthesis.

UNIT -2: Hazardous Chemicals

Classification of hazardous chemicals, transportation of hazardous chemicals, Hazchem code, Storage and handling of hazardous substances, Emergency preparedness (on site & offsite), Safety audit, Concept of fire and explosion, Major accidents involving hazardous substances

Text Books:

1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

<table>
<thead>
<tr>
<th>CO-PO/PSO Mapping Chart</th>
<th>(3/2/1 indicates strength of correlation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 – High; 2 – Medium; 1 - Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Program Specific Outcomes: CO1, CO2, CO3, CO4
HR21 HITAM HYDERABAD

B.Tech I Year–II Sem

Subject Code: 21AC2HS01

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Social and Health Consciousness
(Common to ECE, EEE, ME,CSE,CSD,CSO,CSC,CSM)

Prerequisites: Nil

Course Objectives:

1. To promote positive health, prevention of stress related to health problems and rehabilitation through Yoga.
2. To impart skills in the students to introduce Yoga for health to general public
3. To invoke scientific attitude and team spirit to channelize their energies in to creative and constructive endeavours.
4. The main objective of National Service Scheme is personality development through social service or community service and through physical education.

Course Outcomes: Upon completion of the Course, the students will be able to:

CO1: Enable the student to have good health and mental hygiene.
CO2: Possess emotional stability to integrate moral values through social service.
CO3: Attain higher level of consciousness in both physical and mental status.
CO4: Understand the concept of ill health and their remedies through yoga.

Module I

Unit 1: Introduction to Yoga and Importance of Yogic practices

Definition, nature and scope of yoga -Elements of Yoga in Vedic and Upanashadic literature. -Development of yoga through the ages. - Schools of yoga: Karma Yoga, Bhakti Yoga, Jnana Yoga, Hatha yoga, Raja yoga and Mantra Yoga. General benefits of Yoga Practices, preparing oneself for yoga practices, Comparison between yoga practices and other systems of physical exercises though practical examples.

Unit 2: Concept of Yoga Practices and its Types

Types of Yoga -Hatha Yoga, Raja Yoga, Laya Yoga, Bhakti Yoga, Gyan Yoga, Karma Yoga, Asthlang Yoga, Relevance of Yoga in modern life. Yama and Niyama (Attitude Training Practices), Asana (Steady Postures), Pranayama (control of the breathing process), Mudras and Bandhas (seal and lock for energy), Shat Kriya (six purification techniques), Dhyana (Meditation)

Module II

Unit 1: Asana
Definition, Scope and limitations of Asana, Classification of Asanas and different types of Asanas relating to posture, Role of asana in yogic spiritual Yogic culture and Physical
culture, different stage and phases in the performing of asana, Comparison between Asanas and other systems of physical exercises through practical examples.

Unit 2: Pranayama

Definition, Different phases of Pranayama, Importance of Pranayama in Yogic Curriculum, Comparison between pranayama & deep breathing exercises with practical examples.

Module III

Unit 1: Introduction to the physical education and ethics in sports

Unit 2: Olympic, Commonwealth and Asian Games

Ancient Olympic Games –Historical Background, Significance of Ancient Games. - Modern Olympic Games: Olympic Motto, Emblem, Rings, International Olympic Committee (IOC), functions of IOC - Asian Games

Module IV

Unit 1: Philosophy of National Service Scheme (NSS)

Introduction and Basic Concepts of NSS, History and Philosophy & Definition of NSS, Aims & Objectives of NSS, Emblem, flag, Motto, Song, Badge, NSS day etc., Organizational structure (from national to regional level), Roles and responsibilities of various NSS functionaries

Unit 2: NSS Programmes and Activities

NSS Programmes and Activities, Concept of regular activities (one day camp), special seven-day conduction camping, day and night camps and relevance of celebration of important days recognized by united nations, Centre, State Govt. & University, Basis of adoption of village/slums, methodology of conduction survey, financial pattern of the scheme, Coordination with different agencies, Maintenance of the diary

Module V

Unit 1: Community Mobilization

Functioning of community stakeholders, Designing the message in the context of the problem and the culture of the community, Identifying methods of mobilization, Youth-Adult partnership, Concept of Community development

Unit 2: Volunteerism and Government Organisations /Non-Government Organisations

Indian tradition of volunteerism, Value system of volunteerism, Motivation and constraints of volunteerism, Role of NSS volunteers in Swatch Bharat Abhiyan, Role of NSS volunteers in
Digital India, Sources of funding National Service Scheme (NSS)- Government organisations (GO) and Non-Government organisations (NGO).

Text Books:

1. The Heart of Yoga: Developing a Personal Practice by T.K.V. Desikachar
2. The Yoga Sutras by Satchidananda
3. Freeman – Physical Education in Changing Society

Reference Books:

1. Yoga The Spirit and Practice of Moving into Stillness by Erich Schiffmann
2. Yoga Anatomy by Leslie Kaminoff
3. Essentials of Physical Education” By Ajmer Singh & Jagdish

Web Resources:

CO-PO/PSO Mapping Chart

(3/2/1 indicates strength of correlation)

3 – High; 2 – Medium; 1 – Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>